Current Transducer LA 55-TP/SP27

For the electronic measurement of currents : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

CE

E	lectrical data				
I _{PN}	Primary nominal r.m.s. current		50		A
I _P	Primary current, measuring range		0 ± 100		Α
Ř _M	Measuring resistance		$\mathbf{R}_{_{\mathrm{Mmin}}}$	$\mathbf{R}_{_{Mma}}$	x
	with ± 12 V	$@ \pm 50 A_{max}$	0	210	Ω
		@ ±100 A _{max}	0	30	Ω
	with ± 15 V	$@ \pm 50 A_{max}$	30	320	Ω
		@ ±100 A _{max}	30	90	Ω
I _{SN}	Secondary nominal r.m.s. current		25		mΑ
κ _N	Conversion ratio		1 : 200	0	
V _c	Supply voltage (± 5 %)		± 12 15		V
٦,	Current consumption		10(@±15V)+ I _s mA		ςmΑ
Ň	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		3.6		kV
۷ ً	R.m.s. rated voltage		600		V

Ac	curacy - Dynamic perforr	nance data			
Х	Accuracy @ I_{PN} $T_{A} = 25^{\circ}C$	@ ± 15 V (± 5 %)	±0.65		%
	@	± 12 15 V (± 5 %)	±0.90		%
E _	Linearity error		< 0.15		%
			Тур	Мах	
I _o	Offset current @ $I_p = 0$, $T_A = 25^{\circ}C$			± 0.1	mΑ
I _{OM}	Residual current 1^{\prime} @ $I_{p} = 0$, after an overload of 3 x I_{pN}			± 0.2	mΑ
I _{OT}	Thermal drift of I	- 25°C + 85°C	± 0.1	± 0.3	mΑ
0.	5	- 40°C 25°C	± 0.2	± 0.5	mΑ
t _{ra}	Reaction time @ 10 % of $I_{_{PN}}$		< 500		ns
t	Response time 2) @ 90 % of IPN		< 1		μs
di/dt	di/dt accurately followed		> 200		A/µs
f	Frequency bandwidth (- 1 dB)		DC 2	200	kHz

General data				
T _A	Ambient operating temperature	- 40 + 85	°C	
Ts	Ambient storage temperature	- 50 + 90	°C	
R _s	Secondary coil resistance @ $T_A = 85^{\circ}C$	140	Ω	
m	Mass	35	g	
	Standards	EN 50155 : 19	EN 50155 : 1995	

50 A

Features

I_{PN}

- Closed loop (compensated) current transducer using the Hall effect
- Mounted on printed circuit board
- Insulated plastic case recognized according to UL 94-V0.

Special features

- $I_{\rm P} = 0 .. \pm 100 \, \text{A}$
- $\mathbf{K}_{N} = 1 : 2000$
- $V_{d} = 3.6 \, \text{kV}$
- $\mathbf{T}_{A}^{\circ} = -40^{\circ}$ C ... + 85°C.
- Potted.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- Single or three phases inverter
- Propulsion and braking chopper
- Propulsion converter
- Auxiliary converter
- Battery charger.

Application domain

• Traction.

Notes: 1) The result of the coercive field of the magnetic circuit

 $^{2)}$ With a di/dt of 100 A/µs.

Dimensions LA 55-TP/SP27 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening & connection of primary

Recommended PCB hole

• Fastening & connection of secondary

Recommended PCB hole

± 0.2 mm
bus bar
6.4 x 1.6 mm
3.8 mm
3 pins
0.63 x 0.56 mm
0.9 mm

Remarks

- $\mathbf{I}_{_{\!S}}$ is positive when $\mathbf{I}_{_{\!P}}$ flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.